Rehabilitation robots have become one of the main technical instruments that Treat disorder patients in the biomedical engineering field. The robotic glove for the rehabilitation is basically made of specialized materials which can be designed to help the post-stroke patients. In this paper, a review of the different types of robotic glove for Rehabilitation have been discussed and summarized. This study reviews a different mechanical system of robotic gloves in previous years. The selected studies have been classified into four types according to the Mechanical Design: The first type is a tendon-driven robotic glove. The second type of robotic glove works with a soft actuator as a pneumatic which is operated by air pressure that passes through a plastic pipe, pressure valves, and air compressor. The third type is the exoskeleton robotic gloves this type consists of a wearable mechanical design that can used a finger-based sensor to measure grip strength or is used in interactive video applications. And the fourth type is the robotic glove with a liner actuator this type consists of a tape placed on the fingers and connected to linear actuators to open and close the fingers during the rehabilitation process.
Using a lower limb exoskeleton for rehabilitation (LLE) Lower limb exoskeleton rehabilitation robots (LER) are designed to assist patients with daily duties and help them regain their ability to walk. Even though a substantial portion of them is capable of doing both, they have not yet succeeded in conducting agile and intelligent joint movement between humans and machines, which is their ultimate goal. The typical LLE products, rapid prototyping, and cutting-edge techniques are covered in this review. Restoring a patient’s athletic prowess to its pr-accident level is the aim of rehabilitation treatment. The core of research on lower limb exoskeleton rehabilitation robots is the understanding of human gait. The performance of common prototypes might be used to match wearable robot shapes to human limbs. To imitate a normal stride, robot-assisted treatment needs to be able to control the movement of the robot at each joint and move the patient’s limb.