Real-time detection and recognition systems for vehicle license plates present a significant design and implementation challenge, arising from factors such as low image resolution, data noise, and various weather and lighting conditions.This study presents an efficient automated system for the identification and classification of vehicle license plates, utilizing deep learning techniques. The system is specifically designed for Iraqi vehicle license plates, adapting to various backgrounds, different font sizes, and non-standard formats. The proposed system has been designed to be integrated into an automated entrance gate security system. The system’s framework encompasses two primary phases: license plate detection (LPD) and character recognition (CR). The utilization of the advanced deep learning technique YOLOv4 has been implemented for both phases owing to its adeptness in real-time data processing and its remarkable precision in identifying diminutive entities like characters on license plates. In the LPD phase, the focal point is on the identification and isolation of license plates from images, whereas the CR phase is dedicated to the identification and extraction of characters from the identified license plates. A substantial dataset comprising Iraqi vehicle images captured under various lighting and weather circumstances has been amassed for the intention of both training and testing. The system attained a noteworthy accuracy level of 95.07%, coupled with an average processing time of 118.63 milliseconds for complete end-to-end operations on a specified dataset, thus highlighting its suitability for real-time applications. The results suggest that the proposed system has the capability to significantly enhance the efficiency and reliability of vehicle license plate recognition in various environmental conditions, thus making it suitable for implementation in security and traffic management contexts.
This paper presents a simple and fast design and implementation for a soft robot arm. The proposed continuum arm has been built by a single self-bending contraction actuator (SBCA) with two-fingers soft gripper. Because of the valuable advantages of the pneumatic artificial muscle (PAM), this continuum arm provides a high degree of safety to individuals. The proposed soft robot arm has a bending behaviour of more 180° at 3.5 kg, while, its weight is 0.7 kg. Moreover, it is designed to assist the people by reducing the number of backbends and that leads to a decrease in the possibility of lower back pain.
Using a lower limb exoskeleton for rehabilitation (LLE) Lower limb exoskeleton rehabilitation robots (LER) are designed to assist patients with daily duties and help them regain their ability to walk. Even though a substantial portion of them is capable of doing both, they have not yet succeeded in conducting agile and intelligent joint movement between humans and machines, which is their ultimate goal. The typical LLE products, rapid prototyping, and cutting-edge techniques are covered in this review. Restoring a patient’s athletic prowess to its pr-accident level is the aim of rehabilitation treatment. The core of research on lower limb exoskeleton rehabilitation robots is the understanding of human gait. The performance of common prototypes might be used to match wearable robot shapes to human limbs. To imitate a normal stride, robot-assisted treatment needs to be able to control the movement of the robot at each joint and move the patient’s limb.
According to the growing interest in the soft robotics research field, where various industrial and medical applications have been developed by employing soft robots. Our focus in this paper will be the Pneumatic Muscle Actuator (PMA), which is the heart of the soft robot. Achieving an accurate control method to adjust the actuator length to a predefined set point is a very difficult problem because of the hysteresis and nonlinearity behaviors of the PMA. So the construction and control of a 30 cm soft contractor pneumatic muscle actuator (SCPMA) were done here, and by using different strategies such as the PID controller, Bang-Bang controller, Neural network controller, and Fuzzy controller, to adjust the length of the (SCPMA) between 30 cm and 24 cm by utilizing the amount of air coming from the air compressor. All of these strategies will be theoretically implemented using the MATLAB/Simulink package. Also, the performance of these control systems will be compared with respect to the time-domain characteristics and the root mean square error (RMSE). As a result, the controller performance accuracy and robustness ranged from one controller to another, and we found that the fuzzy logic controller was one of the best strategies used here according to the simplicity of the implementation and the very accurate response obtained from this method.