In recent years, there has been a considerable rise in the applications in which object or image categorization is beneficial for example, analyzing medicinal images, assisting persons to organize their collections of photos, recognizing what is around self-driving vehicles, and many more. These applications necessitate accurately labeled datasets, in their majority involve an extensive diversity in the types of images, from cats or dogs to roads, landscapes, and so forth. The fundamental aim of image categorization is to predict the category or class for the input image by specifying to which it belongs. For human beings, this is not a considerable thing, however, learning computers to perceive represents a hard issue that has become a broad area of research interest, and both computer vision techniques and deep learning algorithms have evolved. Conventional techniques utilize local descriptors for finding likeness between images, however, nowadays; progress in technology has provided the utilization of deep learning algorithms, especially the Convolutional Neural Networks (CNNs) to auto-extract representative image patterns and features for classification The fundamental aim of this paper is to inspect and explain how to utilize the algorithms and technologies of deep learning to accurately classify a dataset of images into their respective categories and keep model structure complication to a minimum. To achieve this aim, must focus precisely and accurately on categorizing the objects or images into their respective categories with excellent results. And, specify the best deep learning-based models in image processing and categorization. The developed CNN-based models have been proposed and a lot of pre-training models such as (VGG19, DenseNet201, ResNet152V2, MobileNetV2, and InceptionV3) have been presented, and all these models are trained on the Caltech-101 and Caltech-256 datasets. Extensive and comparative experiments were conducted on this dataset, and the obtained results demonstrate the effectiveness of the proposed models. The obtained results demonstrate the effectiveness of the proposed models. The accuracy for Caltech-101 and Caltech-256 datasets was (98.06% and 90%) respectively.
WiFi-based human activity and gesture recognition explore the interaction between the human hand or body movements and the reflected WiFi signals to identify various activities. This type of recognition has received much attention in recent years since it does not require wearing special sensors or installing cameras. This paper aims to investigate human activity and gesture recognition schemes that use Channel State Information (CSI) provided by WiFi devices. To achieve high accuracy in the measurement, deep learning models such as AlexNet, VGG 19, and SqueezeNet were used for classification and extracting features automatically. Firstly, outliers are removed from the amplitude of each CSI stream during the preprocessing stage by using the Hampel identifier algorithm. Next, the RGB images are created for each activity to feed as input to Deep Convolutional Neural Networks. After that, data augmentation is implemented to reduce the overfitting problems in deep learning models. Finally, the proposed method is evaluated on a publicly available dataset called WiAR, which contains 10 volunteers, each of whom executes 16 activities. The experiment results demonstrate that AlexNet, VGG19, and SqueezeNet all have high recognition accuracy of 99.17 %, 96.25%, and 100 %, respectively.