The performance of power distribution systems (PDS) has improved greatly in recent times ever since the distributed generation (DG) unit was incorporated in PDS. DG integration effectively cuts down the line power losses (PL) and strengthens the bus voltages (BV) provided the size and place are optimized. Accordingly, in the present work, a hybrid optimization technique is implemented for incorporating a single DG unit into radial PDS. The proposed hybrid method is formed by integrating the active power loss sensitivity (APLS) index and whale optimization meta-heuristic algorithm. The ideal place and size for DG are optimized to minimize total real power losses (TLP) and enhance bus voltages (BV). The applicability of the proposed hybrid technique is analyzed for Type I and Type III DG installation in a balanced IEEE 33-bus and 69-bus radial PDS. Optimal inclusion of type I and III DG in a 33-bus radial test system cut down TLP by 51.85% and 70.02% respectively. Likewise, optimal placement of type I and III DG reduced TLP by 65.18%, and 90.40%, respectively for 69-bus radial PDS. The impact of DG installation on the performance of radial PDS has been analyzed and a comparative study is also presented to examine the sovereignty of the proposed hybrid method. The comparative study report outlined that the proposed hybrid method can be a better choice for solving DG optimization in radial PDS.
The power quality problems can be defined as the difference between the quality of power supplied and the quality of power required. Recently a large interest has been focused on a power quality domain due to: disturbances caused by non-linear loads and Increase in number of electronic devices. Power quality measures the fitness of the electric power transmitted from generation to industrial, domestic and commercial consumers. At least 50% of power quality problems are of voltage quality type. Voltage sag is the serious power quality issues for the electric power industry and leads to the damage of sensitive equipments like, computers, programmable logic controller (PLC), adjustable speed drives (ADS). The prime goal of this paper is to investigate the performance of the Fuzzy Logic controller based DVR in reduction the power disturbances to restore the load voltage to the nominal value and reduce the THD to a permissible value which is 5% for the system less than 69Kv. The modeling and simulation of a power distribution system have been achieved using MATLABL/Simulink. Different faults conditions and power disturbances with linear and non-linear loads are created with the proposed system, which are initiated at a duration of 0.8sec and kept till 0.95sec.