This research aims to understand the enhancing reading advancement using eye gaze tracking in regards to pull the increase of time interacting with such devices along. In order to realize that, user should have a good understanding of the reading process and of the eye gaze tracking systems; as well as a good understanding of the issues existing while using eye gaze tracking system for reading process. Some issues are very common, so our proposed implementation algorithm compensate these issues. To obtain the best results possible, two mains algorithm have been implemented: the baseline algorithm and the algorithm to smooth the data. The tracking error rate is calculated based on changing points and missed changing points. In [21], a previous implementation on the same data was done and the final tracking error rate value was of 126%. The tracking error rate value seems to be abnormally high but this value is actually useful as described in [21]. For this system, all the algorithms used give a final tracking error rate value of 114.6%. Three main origins of the accuracy of the eye gaze reading were normal fixation, regression, skip fixation; and accuracies are displayed by the tracking rate value obtained. The three main sources of errors are the calibration drift, the quality of the setup and the physical characteristics of the eyes. For the tests, the graphical interface uses characters with an average height of 24 pixels for the text. By considering that the subject was approximately at 60 centimeters of the tracker. The character on the screen represents an angle of ±0.88◦; which is just above the threshold of ±0.5◦ imposed by the physical characteristics of the eyeball for the advancement of reading using eye gaze tracking.
Real-time detection and recognition systems for vehicle license plates present a significant design and implementation challenge, arising from factors such as low image resolution, data noise, and various weather and lighting conditions.This study presents an efficient automated system for the identification and classification of vehicle license plates, utilizing deep learning techniques. The system is specifically designed for Iraqi vehicle license plates, adapting to various backgrounds, different font sizes, and non-standard formats. The proposed system has been designed to be integrated into an automated entrance gate security system. The system’s framework encompasses two primary phases: license plate detection (LPD) and character recognition (CR). The utilization of the advanced deep learning technique YOLOv4 has been implemented for both phases owing to its adeptness in real-time data processing and its remarkable precision in identifying diminutive entities like characters on license plates. In the LPD phase, the focal point is on the identification and isolation of license plates from images, whereas the CR phase is dedicated to the identification and extraction of characters from the identified license plates. A substantial dataset comprising Iraqi vehicle images captured under various lighting and weather circumstances has been amassed for the intention of both training and testing. The system attained a noteworthy accuracy level of 95.07%, coupled with an average processing time of 118.63 milliseconds for complete end-to-end operations on a specified dataset, thus highlighting its suitability for real-time applications. The results suggest that the proposed system has the capability to significantly enhance the efficiency and reliability of vehicle license plate recognition in various environmental conditions, thus making it suitable for implementation in security and traffic management contexts.