Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for image-encryption

Article
An Efficient Diffusion Approach for Chaos-Based Image Encryption and DNA Sequences

Ghofran Khaled Shraida, Hameed Abdulkareem Younis

Pages: 69-74

PDF Full Text
Abstract

Experts and researchers in the field of information security have placed a high value on the security of image data in the last few years. They have presented several image encryption techniques that are more secure. To increase the security level of image encryption algorithms, this article offers an efficient diffusion approach for image encryption methods based on one- dimensional Logistic, three-dimensional Lorenz, DNA encoding and computing, and SHA-256. The encryption test demonstrates that the method has great security and reliability. This article, also, examines the security of encryption methods, such as secret key space analysis, key sensitivity test, histogram analysis, information entropy process, correlation examination, and differential attack. When the image encryption method described in this article is compared to several previous image encryption techniques, the encryption algorithm has higher information entropy and a lower correlation coefficient.

Article
Multilevel Permutation with Different Block Size/ Stream Cipher Image Encryption

Abbas A. Jasim, Hiba Hakim

Pages: 42-48

PDF Full Text
Abstract

In this work, a new image encryption method using a combined multilevel permutation with stream cipher is proposed. In the permutation algorithm, image is divided into blocks in each level and its blocks are rearranged by using pseudorandom permutation method. A new non linear stream cipher algorithm is also proposed that is based on combining several keys generated by Linear Feedback Shift Register (LFSR). The results shown that the proposed algorithm has a high security feature and it is efficient for image encryption. Practical tests proved that the proposed encryption algorithm is robust, provides high level of security and gives perfect reconstruction of the decrypted image.

Article
Design and FPGA Implementation of a Hyper-Chaotic System for Real-time Secure Image Transmission

Abdul-Basset A. Al-Hussein, Fadhil Rahma Tahir, Ghaida A. Al-Suhail

Pages: 55-68

PDF Full Text
Abstract

Recently, chaos theory has been widely used in multimedia and digital communications due to its unique properties that can enhance security, data compression, and signal processing. It plays a significant role in securing digital images and protecting sensitive visual information from unauthorized access, tampering, and interception. In this regard, chaotic signals are used in image encryption to empower the security; that’s because chaotic systems are characterized by their sensitivity to initial conditions, and their unpredictable and seemingly random behavior. In particular, hyper-chaotic systems involve multiple chaotic systems interacting with each other. These systems can introduce more randomness and complexity, leading to stronger encryption techniques. In this paper, Hyper-chaotic Lorenz system is considered to design robust image encryption/ decryption system based on master-slave synchronization. Firstly, the rich dynamic characteristics of this system is studied using analytical and numerical nonlinear analysis tools. Next, the image secure system has been implemented through Field-Programmable Gate Arrays (FPGAs) Zedboard Zynq xc7z020-1clg484 to verify the image encryption/decryption directly on programmable hardware Kit. Numerical simulations, hardware implementation, and cryptanalysis tools are conducted to validate the effectiveness and robustness of the proposed system.

Article
Design of High-Secure Digital/Optical Double Color Image Encryption Assisted by 9D Chaos and DnCNN

Rusul Abdulridha Muttashar, Raad Sami Fyath

Pages: 165-181

PDF Full Text
Abstract

With the rapid development of multimedia technology, securing the transfer of images becomes an urgent matter. Therefore, designing a high-speed/secure system for color images is a real challenge. A nine-dimensional (9D) chaotic- based digital/optical encryption schem is proposed for double-color images in this paper. The scheme consists of cascaded digital and optical encryption parts. The nine chaotic sequences are grouped into three sets, where each set is responsible for encryption one of the RGB channels independently. One of them controls the fusion, XOR operation, and scrambling-based digital part. The other two sets are used for controlling the optical part by constructing two independent chaotic phase masks in the optical Fourier transforms domain. A denoising convolution neural network (DnCNN) is designed to enhance the robustness of the decrypted images against the Gaussian noise. The simulation results prove the robustness of the proposed scheme as the entropy factor reaches an average of 7.997 for the encrypted color lena-baboon images with an infinite peak signal-to-noise ratio (PSNR) for the decrypted images. The designed DnCNN operates efficiently with the proposed encryption scheme as it enhances the performance against the Gaussian noise, where the PSNR of the decrypted Lena image is enhanced from 27.01 dB to 32.56 dB after applying the DnCNN.

Article
A Secure Image Cryptographic Algorithm Based on Triple Incorporated Ciphering Stages

Sura F. Yousif, Abbas Salman Hameed, Dheyaa T. Al-Zuhairi

Pages: 1-21

PDF Full Text
Abstract

Lately, image encryption has stand out as a highly urgent demand to provide high security for digital images against use and unauthorized distribution. A lot of existing researches use chaotic systems, symmetric or asymmetric schemes for image encryption, but cryptosystem based on one encryption technique only, faces many challenges like weak security and low complexity. Therefore, incorporating two or more different ciphering methods yields a secure and efficient algorithm to protect image information. In this work, a new image cryptosystem is suggested by joining zigzag scan technique, RSA algorithm and chaotic systems. These three security factors introduce Triple Incorporated Ciphering stages system (TIC). Initially, the plaintext image is divided into 8 × 8 non-overlapping blocks, then the odd blocks are isolated from the even blocks. After that, a new modified zigzag scan in two different directions is adopted for shuffling pixels in the odd and even blocks. This operation effectively enhances the shuffling degree. Next, the RSA algorithm is utilized after combining the scrambled blocks in one matrix. Finally, chaotic systems are implemented on the resultant encrypted matrix to complete the ciphering process. The chaos is implemented in two steps; confusion and diffusion. Duffing map is exploited in the confusion stage, whereas L¨u system is adopted on the shuffled matrix in the diffusion stage. The simulation results show the superiority of TIC in both security and attacks robustness compared to other cryptographic algorithms. Therefore, TIC can be exploited in real-time communication systems for secure image transmission.

Article
Digital Image Encryption using AES and Random Number Generator

Noor Kareem Jumaa

Pages: 80-89

PDF Full Text
Abstract

In nowadays world of rapid evolution of exchanging digital data, data protection is required to protect data from the unauthorized parities. With the widely use of digital images of diverse fields, it is important to conserve the confidentiality of image’s data form any without authorization access. In this paper the problem of secret key exchanging with the communicated parities had been solved by using a random number generator which based on Linear Feedback Shift Register (LFSR). The encryption/decryption is based on Advance Encryption Standard (AES) with the random key generator. Also, in this paper, both grayscale and colored RGB images have been encrypted/decrypted. The functionality of proposed system of this paper, is concerned with three features: First feature, is dealing with the obstetrics of truly random and secure encryption key while the second one deals with encrypting the plain or secret image using AES algorithm and the third concern is the extraction the original image by decrypting the encrypted or cipher one. “Mean Square Error (MSE)”, “Peak Signal to Noise Ratio (PSNR)”, “Normalized Correlation (NK)”, and “Normalized Absolute Error (NAE)” are measured for both (original-encrypted) images and (original-decrypted) image in order to study and analyze the performance of the proposed system according to image quality features.

1 - 6 of 6 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.