Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for healthcare

Article
Review in IoT for Healthcare in Our Life

Bayadir A. Issa, Qabeela Q. Thabit

Pages: 9-20

PDF Full Text
Abstract

Over the previous decade, significant research has been conducted in the field of healthcare services and their technological advancement. To be more precise, the Internet of Things (IoT) has demonstrated potential for connecting numerous medical devices, sensors, and healthcare professionals in order to deliver high-quality medical services in remote locations. This has resulted in an increase in patient safety, a decrease in healthcare expenses, an increase in the healthcare services' accessibility, and an increase in the industry's healthcare operational efficiency. This paper provides an overview of the possible healthcare uses of Internet of Things (IoT)-based technologies. The evolution of the HIoT application has been discussed in this article in terms of enabling technology, services of healthcare, and applications for resolving different healthcare challenges. Additionally, effort difficulties and drawbacks with the HIoT system are explored. In summary, this study provides a complete source of information on the many applications of HIoT together the purpose is to help future academics who are interested in working in the field and making advances gain knowledge into the issue.

Article
Secure Patient Authentication Scheme in the Healthcare System Using Symmetric Encryption

Naba M. Hamed, Ali A. Yassin

Pages: 71-81

PDF Full Text
Abstract

Recently, the incorporation of state-of-the-art technology such as Electronic Healthcare Records (EHRs), networks, and cloud computing has transformed the traditional healthcare system. However, security problems have arisen as a result of the integration of technology. Secure remote user authentication is a core part of the healthcare system to validate the user's identification via an unsecure communication network. Since then, several remote user authentication schemes have been presented, each with its own set of pros and limitations. As a result, security, malicious attacks and privacy concerns are considered one of the main challenges related to the healthcare system. In this paper, we propose a safe user authentication scheme for patients in the healthcare system that overcomes these flaws and confirms the security of the proposed work using scyther, a formal security tool. In the healthcare environment, our work provides an effective means to construct an environment capable of setting, registering, storing, searching, analyzing, authentication, and verifying electronic healthcare information in order to protect the information of patients. Furthermore, our suggested scheme uses symmetric encryption based on the crypto- hash function for accessing the anomaly of the patient's identity and One-Time Password (OTP). Towards the end of the study, the performance analysis results indicate a delicate balance of security and performance that is frequently lacking in previous works.

Article
A Privacy-Preserving Scheme for Managing Secure Data in Healthcare System

Naba M. Hamed, Ali A Yassin

Pages: 70-82

PDF Full Text
Abstract

In the world of modern technology and the huge spread of its use, it has been combined with healthcare systems and the establishment of electronic health records (EHR) to follow up on patients. This merging of technology with healthcare has allowed for more accurate EHRs that follow a patient to different healthcare facilities. Timely exchange of electronic health information (EHR) between providers is critical for aiding medical research and providing fast patient treatment. As a result, security issues and privacy problems are viewed as significant difficulties in the healthcare system. Several remote user authentication methods have been suggested. In this research, we present a feasible patient EHR migration solution for each patient. finally, each patient may securely delegate their current hospital’s information system to a hospital certification authority in order to receive migration proof that can be used to transfer their EHR to a different hospital. In addition, the proposed scheme is based on crypto-hash functions and asymmetric cryptosystems by using homomorphic cryptography. The proposed scheme carried out two exhaustive formal security proofs for the work that was provided. Using Scyther, a formal security tool, we present a secure user authentication technique in the proposed healthcare scheme that ensures security and informal analysis.

Article
Issues and Research Fields of Medical Robotics: A Review

Sarah Sabeeh, Israa S. Al-Furati

Pages: 138-144

PDF Full Text
Abstract

The goal for collaborative robots has always driven advancements in robotic technology, especially in the manufacturing sector. However, this is not the case in service sectors, especially in the health sector. Thus, this lack of focus has now opened more room for the design and development of service robots that can be used in the health sector to help patients with ailments, cognitive problems, and disabilities. There is currently a global effort towards the development of new products and the use of robotic medical devices and computer-assisted systems. However, the major problem has been the lack of a thorough and systematic review of robotic research into disease and epidemiology, especially from a technology perspective. Also, medical robots are increasingly being used in healthcare to perform a variety of functions that improve patient care. This scoping review is aimed at discovering the types of robots used in healthcare and where they are deployed. Moreover, the current study is an overview of various forms of robotic technology and its uses the healthcare industry. The considered technologies are the products of a partnership between the healthcare sector and academia. They demonstrate the research and testing that are necessary for the service of robot development before they can be employed in practical applications and service scenarios. The discussion also focused on the upcoming research areas in robotic systems as well as some important technologies necessary for human-robot collaboration, such as wireless sensor networks, big data, and artificial intelligence.

Article
Secure Electronic Healthcare Record based on Distributed Global Database and Schnorr Signcryption

Mohammad Fareed, Ali A Yassin

Pages: 62-69

PDF Full Text
Abstract

Preserving privacy and security plays a key role in allowing each component in the healthcare system to access control and gain privileges for services and resources. Over recent years, there have been several role-based access control and authentication schemes, but we noticed some drawbacks in target schemes such as failing to resist well-known attacks, leaking privacy-related information, and operational cost. To defeat the weakness, this paper proposes a secure electronic healthcare record scheme based on Schnorr Signcryption, crypto hash function, and Distributed Global Database (DGDB) for the healthcare system. Based on security theories and the Canetti-Krawczyk model (CK), we notice that the proposed scheme has suitable matrices such as scalability, privacy preservation, and mutual authentication. Furthermore, findings from comparisons with comparable schemes reveal that the suggested approach provides greater privacy and security characteristics than the other schemes and has enough efficiency in computational and communicational aspects.

Article
Healthcare Monitoring and Analytic System Based Internet of Thing

Bahaa S. Mostafa, Abbas Hussain Miry, Tariq M. Salman

Pages: 30-36

PDF Full Text
Abstract

In this work, a healthcare monitoring system-based Internet of Medical Things (IoMT) is proposed, implemented, analyze it by artificial intelligence using fuzzy logic. Atmega microcontroller was used to achieve the function of the proposed work and provide the area for monitoring and Analytic(decision) to the caretakers or doctors through putting the results in the platform. In this paper, the heart rate pulse sensor and infrared temperature sensor are chosen, which give skin temperature and room temperature to provide their results to the caretaker. The decision that gives the patient is in a normal state, or the fuzzy logic does an abnormal state or risk state. The fuzzy logic is used for it accurate and fast in processing data and gives a result very closer to the reality in smart health services. IoMT enables the doctors and caretakers to monitor the patient easily at any time and any place by using their intelligent laptops, tablets, and phones. Finally, the proposed system can contribute to the construction of a wide healthcare monitoring system in the unit or in the department that follows on for the hospital. Therefore, Doctors can improve the accuracy of the diagnosis, as they receive all the patient data necessary.

Article
Authentication Healthcare Scheme in WBAN

Abdullah Mohammed Rashid, Ali A. Yassin, Abdulla J. Y. Aldarwish, Aqeel A. Yaseen, Hamid Alasadi, Ammar Asaad, Alzahraa J. Mohammed

Pages: 118-127

PDF Full Text
Abstract

A wireless body area network (WBAN) connects separate sensors in many places of the human body, such as clothes, under the skin. WBAN can be used in many domains such as health care, sports, and control system. In this paper, a scheme focused on managing a patient’s health care is presented based on building a WBAN that consists of three components, biometric sensors, mobile applications related to the patient, and a remote server. An excellent scheme is proposed for the patient’s device, such as a mobile phone or a smartwatch, which can classify the signal coming from a biometric sensor into two types, normal and abnormal. In an abnormal signal, the device can carry out appropriate activities for the patient without requiring a doctor as a first case. The patient does not respond to the warning message in a critical case sometimes, and the personal device sends an alert to the patient’s family, including his/her location. The proposed scheme can preserve the privacy of the sensitive data of the patient in a protected way and can support several security features such as mutual authentication, key management, anonymous password, and resistance to malicious attacks. These features have been proven depending on the Automated Validation of Internet Security Protocols and Applications. Moreover, the computation and communication costs are efficient compared with other related schemes.

Article
An Efficient EHR Secure Exchange Among Healthcare Servers Using Light Weight Scheme

Aqeel Adel Yaseen, Kalyani Patel, Abdulla J. Aldarwish, Ali A. Yassin

Pages: 69-82

PDF Full Text
Abstract

This work addresses the critical need for secure and patient-controlled Electronic Health Records (EHR) migration among healthcare hospitals’ cloud servers (HHS). The relevant approaches often lack robust access control and leave data vulnerable during transfer. Our proposed scheme empowers patients to delegate EHR migration to a trusted Third-Party Hospital (TTPH); which is the Certification Authority (CA) while enforcing access control. The system leverages asymmetric encryption utilizing the Elliptic Curve Digital Signature Algorithm (ECDSA), EEC and ECDSA added robust security and lightness EHR sharing. Patient and user privacy is managed due to anonymity through cryptographic hashing for data protection and utilizes mutual authentication for secure communication. Formal security analysis using the Scyther tool and informal analysis was conducted to validate the system’s robustness. The proposed scheme achieved EHR integrity due to the verification of the communicated HHS and ensuring the integrity of the HHS digital certificate during EHR migration. Ultimately, the result achieved in the proposed work demonstrated the scheme’s high balance between data security and accuracy of communication, where the best result obtained represented 7.7/ ms as computational cost and 1248 /bits as communication cost compared with the relevant approaches.

Article
WSNs and IoT Their Challenges and applications for Healthcare and Agriculture: A Survey

Mohammed Mehdi Saleh

Pages: 37-43

PDF Full Text
Abstract

Nowadays, the Wireless Sensor Network (WSN) has materialized its working areas, including environmental engineering, agriculture sector, industrial, business applications, military, intelligent buildings, etc. Sensor networks emerge as an attractive technology with great promise for the future. Indeed, issues remain to be resolved in the areas of coverage and deployment, scalability, service quality, size, energy consumption and security. The purpose of this paper is to present the integration of WSNs for IoT networks with the intention of exchanging information, applying security and configuration. These aspects are the challenges of network construction in which authentication, confidentiality, availability, integrity, network development. This review sheds some light on the potential integration challenges imposed by the integration of WSNs for IoT, which are reflected in the difference in traffic features.

Article
Patients Monitoring and Data Management System for Hospitals

Shahad Abdulrahman Khuder, Sura Nawfal Abdulrazzaq

Pages: 107-116

PDF Full Text
Abstract

This work concerns creating a monitoring system for a smart hospital using Raspberry Pi to measure vital signs. The readings are continually sent to central monitoring units outside the room instead of being beside the patients, to ensure less contacting between the medical staff and patients, also the cloud is used for those who leave the hospital, as the design can track on their medical cases. Data presentation and analysis were accomplished by the LabVIEW program. A Graphical User Interface (GUI) has been created by the Virtual-Instrument (VI) of this program that offer real-time access to monitor patients’ measurements. If unhealthy states are detected, the design triggers alerts and sends SMS message to the doctor. Furthermore, the clinicians can scan a QR code (which is assigned to each patient individually) to access its real-time measurements. The system also utilizes Electrocardiography (ECG) to detect abnormalities and identify specific heart diseases based on its extracted parameters to encourage patients to seek timely medical attention, while aiding doctors in making well-informed decisions. To evaluate the system’s performance, it is tested in the hospital on many patients of different ages and diseases as well. According to the results, the accuracy measurement of SpO2 was about 98.39%, 97.7% for (heart rate) and 98.7% for body temperature. This shows that the system can offer many patients receiving health services from various facilities, and it ensures efficient data management, access control, real-time monitoring, and secure patient information aligning with healthcare standards.

Article
Efficient Path Planning in Medical Environments: Integrating Genetic Algorithm and Probabilistic Roadmap (GA-PRM) for Autonomous Robotics

Sarah Sabeeh, Israa S. Al-Furati

Pages: 243-258

PDF Full Text
Abstract

Path-planning is a crucial part of robotics, helping robots move through challenging places all by themselves. In this paper, we introduce an innovative approach to robot path-planning, a crucial aspect of robotics. This technique combines the power of Genetic Algorithm (GA) and Probabilistic Roadmap (PRM) to enhance efficiency and reliability. Our method takes into account challenges caused by moving obstacles, making it skilled at navigating complex environments. Through merging GA’s exploration abilities with PRM’s global planning strengths, our GA-PRM algorithm improves computational efficiency and finds optimal paths. To validate our approach, we conducted rigorous evaluations against well-known algorithms including A*, RRT, Genetic Algorithm, and PRM in simulated environments. The results were remarkable, with our GA-PRM algorithm outperforming existing methods, achieving an average path length of 25.6235 units and an average computational time of 0.6881 seconds, demonstrating its speed and effectiveness. Additionally, the paths generated were notably smoother, with an average value of 0.3133. These findings highlight the potential of the GA-PRM algorithm in real-world applications, especially in crucial sectors like healthcare, where efficient path-planning is essential. This research contributes significantly to the field of path-planning and offers valuable insights for the future design of autonomous robotic systems.

Article
Using Pearson Correlation and Mutual Information (PC-MI) to Select Features for Accurate Breast Cancer Diagnosis Based on a Soft Voting Classifier

Mohammed S. Hashim, Ali A. Yassin

Pages: 43-53

PDF Full Text
Abstract

Breast cancer is one of the most critical diseases suffered by many people around the world, making it the most common medical risk they will face. This disease is considered the leading cause of death around the world, and early detection is difficult. In the field of healthcare, where early diagnosis based on machine learning (ML) helps save patients’ lives from the risks of diseases, better-performing diagnostic procedures are crucial. ML models have been used to improve the effectiveness of early diagnosis. In this paper, we proposed a new feature selection method that combines two filter methods, Pearson correlation and mutual information (PC-MI), to analyse the correlation amongst features and then select important features before passing them to a classification model. Our method is capable of early breast cancer prediction and depends on a soft voting classifier that combines a certain set of ML models (decision tree, logistic regression and support vector machine) to produce one model that carries the strengths of the models that have been combined, yielding the best prediction accuracy. Our work is evaluated by using the Wisconsin Diagnostic Breast Cancer datasets. The proposed methodology outperforms previous work, achieving 99.3% accuracy, an F1 score of 0.9922, a recall of 0.9846, a precision of 1 and an AUC of 0.9923. Furthermore, the accuracy of 10-fold cross-validation is 98.2%.

Article
Medical Communication Systems Utilizing Optical Nanoantenna and Microstrip Technology

Munaf Fathi Badr, Ibrahim A. Murdas, Ahmed Aldhahab

Pages: 137-153

PDF Full Text
Abstract

Many technical approaches were implemented in the antenna manufacturing process to maintain the desired miniaturiza- tion of the size of the antenna model which can be employed in various applied systems such as medical communication systems. Furthermore, over the past several years, nanotechnology science has rapidly grown in a wide variety of applications, which has given rise to novel ideas in the design of antennas based on nanoscale merits, leading to the use of antennae as an essential linkage between the human body and the different apparatus of the medical communication system. Some medical applications dealt with different antenna configurations, such as microstrip patch antenna or optical nanoantenna in conjugate with sensing elements, controlling units, and monitoring instruments to maintain a specified healthcare system. This study summarizes and presents a brief review of the recent applications of antennas in different medical communication systems involving highlights, and drawbacks with explores recommended issues related to using antennas in medical treatment.

Article
Emotion Recognition Based on Mining Sub-Graphs of Facial Components

Suhaila N. Mohammed, Alia K. Abdul Hassan

Pages: 39-48

PDF Full Text
Abstract

Facial emotion recognition finds many real applications in the daily life like human robot interaction, eLearning, healthcare, customer services etc. The task of facial emotion recognition is not easy due to the difficulty in determining the effective feature set that can recognize the emotion conveyed within the facial expression accurately. Graph mining techniques are exploited in this paper to solve facial emotion recognition problem. After determining positions of facial landmarks in face region, twelve different graphs are constructed using four facial components to serve as a source for sub-graphs mining stage using gSpan algorithm. In each group, the discriminative set of sub-graphs are selected and fed to Deep Belief Network (DBN) for classification purpose. The results obtained from the different groups are then fused using Naïve Bayes classifier to make the final decision regards the emotion class. Different tests were performed using Surrey Audio-Visual Expressed Emotion (SAVEE) database and the achieved results showed that the system gives the desired accuracy (100%) when fusion decisions of the facial groups. The achieved result outperforms state-of-the-art results on the same database.

Article
Securing a Web-Based Hospital Management System Using a Combination of AES and HMAC

Alaa B. Baban, Safa A. Hameed

Pages: 93-99

PDF Full Text
Abstract

The demand for a secured web storage system is increasing daily for its reliability which ensures data privacy and confidentiality. The proposed paper aims to find the most secure ways to maintain integrity and protect privacy and security in healthcare management systems. The Advanced Encryption Standard (AES) algorithm is used to encrypt data transferred by providing a means to check the integrity of information transmitted and make it more immune to cyberattack techniques, this was implemented by using Keyed-Hash Message Authentication Code (HMAC) and Secured Hash Algorithm-256 (SHA-256). The risk of exposure to attackers can be avoided by using honeypot systems combined with Intrusion detection systems (IDSs) as a firewall system is not effective against such attacks alone. The experimental results evaluate the proposed security health information management system by comparing the performance of the encryption algorithm based on encryption time, memory and CPU usage, and entropy for different plaintext lengths. In addition, it can be seen that when changing the AES key size, more memory and time are required the longer the key size is used. The 128 bits AES key is therefore advised if the system must operate in hard real-time.

Article
Epileptic detection based on deep learning: A review

Ola M. Assim, Ahlam F. Mahmood

Pages: 115-126

PDF Full Text
Abstract

Epilepsy, a neurological disorder characterized by recurring seizures, necessitates early and precise detection for effective management. Deep learning techniques have emerged as powerful tools for analyzing complex medical data, specifically electroencephalogram (EEG) signals, advancing epileptic detection. This review comprehensively presents cutting-edge methodologies in deep learning-based epileptic detection systems. Beginning with an overview of epilepsy’s fundamental concepts and their implications for individuals and healthcare are present. This review then delves into deep learning principles and their application in processing EEG signals. Diverse research papers to know the architectures—convolutional neural networks, recurrent neural networks, and hybrid models—are investigated, emphasizing their strengths and limitations in detecting epilepsy. Preprocessing techniques for improving EEG data quality and reliability, such as noise reduction, artifact removal, and feature extraction, are discussed. Present performance evaluation metrics in epileptic detection, such as accuracy, sensitivity, specificity, and area under the curve, are provided. This review anticipates future directions by highlighting challenges such as dataset size and diversity, model interpretability, and integration with clinical decision support systems. Finally, this review demonstrates how deep learning can improve the precision, efficiency, and accessibility of early epileptic diagnosis. This advancement allows for more timely interventions and personalized treatment plans, potentially revolutionizing epilepsy management.

Article
Wireless Sensor Network for Medical Applications

Hanady S.Ahmed, Abduladhem Abdulkareem Ali

Pages: 49-59

PDF Full Text
Abstract

This work presents a healthcare monitoring system that can be used in an intensive care room. Biological information represented by ECG signals is achieved by ECG acquisition part . AD620 Instrumentation Amplifier selected due to its low current noise. The ECG signals of patients in the intensive care room are measured through wireless nodes. A base node is connected to the nursing room computer via a USB port , and is programmed with a specific firmware. The ECG signals are transferred wirelessly to the base node using nRF24L01+ wireless module. So, the nurse staff has a real time information for each patient available in the intensive care room. A star Wireless Sensor Network is designed for collecting ECG signals . ATmega328 MCU in the Arduino Uno board used for this purpose. Internet for things used For transferring ECG signals to the remote doctor, a Virtual Privet Network is established to connect the nursing room computer and the doctor computer . So, the patients information kept secure. Although the constructed network is tested for ECG monitoring, but it can be used to monitor any other signals. INTRODUCTION For elderly people, or the patient suffering from the cardiac disease it is very vital to perform accurate and quick diagnosis. Putting such person under continuous monitoring is very necessary. (ECG) is one of the critical health indicators that directly bene ¿ t from long-term monitoring. ECG signal is a time-varying signal representing the electrical activity of the heart. It is an effective, non- invasive diagnostic tool for cardiac monitoring[1]. In this medical field, a big improvement has been achieved in last few years. In the past, several remote monitoring systems using wired communications were accessible while nowadays the evolution of wireless communication means enables these systems to operate everywhere in the world by expanding internet benefits, applications, and services [2]. Wireless Sensor Networks (WSNs), as the name suggests consist of a network of wireless nodes that have the capability to sense a parameter of interest like temperature, humidity, vibration etc[3,4]. The health care application of wireless sensory network attracts many researches nowadays[ 5-7] . Among these applications ECG monitoring using smart phones[6,8], wearable Body sensors[9], remote patient mentoring[10],...etc. This paper presents wireless ECG monitoring system for people who are lying at intensive care room. At this room ECG signals for every patient are measured using wireless nodes then these signals are transmitted to the nursing room for remote monitoring. The nursing room computer is then connected to the doctors computer who is available at any location over the word by Virtual Privet Network (VPN) in such that the patients information is kept secure and inaccessible from unauthorized persons. II. M OTE H ARDWARE A RCHITECTURE The proposed mote as shown in Fig.1 consists of two main sections : the digital section which is represented by the Arduino UNO Board and the wireless module and the analog section. The analog section consists of Instrumentation Amplifier AD620 , Bandpass filter and an operational amplifier for gain stage, in addition to Right Leg Drive Circuit. The required power is supplied by an internal 3800MAH Lithium-ion (Li-ion) battery which has 3.7V output voltage.

Article
Enhancing Packet Reliability in Wireless Multimedia Sensor Networks using a Proposed Distributed Dynamic Cooperative Protocol (DDCP) Routing Algorithm

Hanadi Al-Jabry, Hamid Ali Abed Al-Asadi

Pages: 158-168

PDF Full Text
Abstract

Wireless Multimedia Sensor Networks (WMSNs) are being extensively utilized in critical applications such as envi- ronmental monitoring, surveillance, and healthcare, where the reliable transmission of packets is indispensable for seamless network operation. To address this requirement, this work presents a pioneering Distributed Dynamic Coop- eration Protocol (DDCP) routing algorithm. The DDCP algorithm aims to enhance packet reliability in WMSNs by prioritizing reliable packet delivery, improving packet delivery rates, minimizing end-to-end delay, and optimizing energy consumption. To evaluate its performance, the proposed algorithm is compared against traditional routing protocols like Ad hoc On-Demand Distance Vector (AODV) and Dynamic Source Routing (DSR), as well as proactive routing protocols such as Optimized Link State Routing (OLSR). By dynamically adjusting the transmission range and selecting optimal paths through cooperative interactions with neighboring nodes, the DDCP algorithm offers effective solutions. Extensive simulations and experiments conducted on a wireless multimedia sensor node testbed demonstrate the superior performance of the DDCP routing algorithm compared to AODV, DSR, and OLSR, in terms of packet delivery rate, end-to-end delay, and energy efficiency. The comprehensive evaluation of the DDCP algorithm against multiple routing protocols provides valuable insights into its effectiveness and efficiency in improving packet reliability within WMSNs. Furthermore, the scalability and applicability of the proposed DDCP algorithm for large-scale wireless multimedia sensor networks are confirmed. In summary, the DDCP algorithm exhibits significant potential to enhance the performance of WMSNs, making it a suitable choice for a wide range of applications that demand robust and reliable data transmission.

Article
Design and Implementation of Monitoring System for Lethal Events of High-Risk COVID-19 Patients

Suhad Qasim Naeem, Ammar Ibrahim Majeed, Noor Nateq ALfaisaly

Pages: 221-231

PDF Full Text
Abstract

The monitoring of COVID-19 patients has been greatly aided by the Internet of Things (IoT). Vital signs, symptoms, and mobility data can be gathered and analyzed by IoT devices, including wearables, sensors, and cameras. This information can be utilized to spot early infection symptoms, monitor the illness’s development, and stop the virus from spreading. It’s critical to take vital signs of hospitalized patients in order to assess their health. Although early warning scores are often calculated three times a day, they might not indicate decompensation symptoms right away. Death rates are higher when deterioration is not properly diagnosed. By employing wearable technology, these ongoing assessments may be able to spot clinical deterioration early and facilitate prompt therapies. This research describes the use of Internet of Things (IoT) to follow fatal events in high-risk COVID-19 patients. These patients’ vital signs, which include blood pressure, heart rate, respiration rate, blood oxygen level, and fever, are taken and fed to a central server on a regular basis so that information may be processed, stored, and published instantly. After processing, the data is utilized to monitor the patients’ condition and send Short Message Service (SMS) alerts when the patients’ vital signs rise above predetermined thresholds. The system’s design, which is based on two ESP32 controllers, sensors for the vital signs listed above, and a gateway, provides real-time reports, high-risk alerts, and patient status information. Clinicians, the patient’s family, or any other authorized person can keep an eye on and follow the patient’s status at any time and from any location. The main contribution in this work is the designed algorithm used in the gateway and the manner in which this gateway collects, analyze, process, and send the patient’s data to the IoT server from one side and the manner in which the gateway deals with the IoT server in the other side. The proposed method leads to reduce the cost and the time the system it takes to get the patient’s status report.

1 - 19 of 19 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.