In developing nations, such as Iraq, supplying power to isolated and rural border areas that are not connected to the grid continues to be a problem. At present, fossil fuels, which are significant causes of pollution, supply around 80% of the world’s energy demands. Nonetheless, drastically reducing reliance on fossil fuels has many reasons, including depleting global fossil fuel supplies, increasing costs and growing energy needs. The present study examines the electrical requirements of the Al-Teeb area, a city situated in the eastern region of Iraq, close to the Iranian border. This region has not been researched despite its tourism and oil significance. Despite the unpredictable expansion of many isolated locations in Iraq in recent years, the number of generation stations has not changed. Supplying energy to these places will require considerable time and money. Photovoltaics (PV), wind turbines (WTs), diesel generators (DGs), batteries and converters combined on the basis of their compatibility under three distinct scenarios comprise the system’s components. Considering the lowest net present cost (NPC) and cost of energy (COE) of all the examined scenarios, PV, WTs, batteries and DGs are the most economical solutions for the Al-Teeb area. Number of PV (1,215), number of WTs (59), number of DGs (13), number of batteries (3,138), number of converters (47), COE (0.155 US$/kWh), NPC (14.2 million US$) and initial capital cost (4.91 million US$) are revealed by the results. Finally, the results are confirmed using another global optimization method, namely, modified particle swarm optimization.
Fast and accurate frequency estimation is essential in various engineering applications, including control systems, communications, and resonance sensing systems. This study investigates the effect of sample size on the interpolation algorithm of frequency estimation. In order to enhance the accuracy of frequency estimation and performance, we describe a novel method that provides a number of approaches for calculating and defending the sample size for of the window function designs, whereas, the correct choice of the type and the size of the window function makes it possible to reduce the error. Computer simulation using Matlab / Simulink environment is performed to investigate the proposed procedure’s performance and feasibility. This study performs the comparison of the interpolation algorithm of frequency estimation strategies that can be applied to improve the accuracy of the frequency estimation. Simulation results shown that the proposed strategy with the Parzen and Flat-top gave remarkable change in the maximum error of frequency estimation. They perform better than the conventional windows at a sample size equal to 64 samples, where the maximum error of frequency estimation is 2.13e-2 , and 2.15e-2 for Parzen and Flat-top windows, respectively. Moreover, the efficiency and performance of the Nuttall window also perform better than other windows, where the maximum error is 7.76×10-5 at a sample size equal to 8192. The analysis of simulation result showed that when using the proposed strategy to improve the accuracy of the frequency estimation, it is first essential to evaluate what is the maximum number of samples that can be obtained, how many spectral lines should be used in the calculations, and only after that choose a suitable window.