Accurate long-term load forecasting (LTLF) is crucial for smart grid operations, but existing CNN-based methods face challenges in extracting essential featuresfrom electricity load data, resulting in diminished forecasting performance. To overcome this limitation, we propose a novel ensemble model that integratesa feature extraction module, densely connected residual block (DCRB), longshort-term memory layer (LSTM), and ensemble thinking. The feature extraction module captures the randomness and trends in climate data, enhancing the accuracy of load data analysis. Leveraging the DCRB, our model demonstrates superior performance by extracting features from multi-scale input data, surpassing conventional CNN-based models. We evaluate our model using hourly load data from Odisha and day-wise data from Delhi, and the experimental results exhibit low root mean square error (RMSE) values of 0.952 and 0.864 for Odisha and Delhi, respectively. This research contributes to a comparative long-term electricity forecasting analysis, showcasing the efficiency of our proposed model in power system management. Moreover, the model holds the potential to sup-port decisionmaking processes, making it a valuable tool for stakeholders in the electricity sector.
Automatic handwriting recognition is a fundamental component of various applications in various fields. During the last three decades, it has become a challenging issue that has attracted much attention. Latin language handwriting recognition has been the primary focus of researchers. As for the Kurdish language, only a few researches have been conducted. This study uses a Kurdish character dataset, which contains 40,940 characters written by 390 native writers. We present an ensemble transfer learning-based model for automatically recognizing handwritten Kurdish letters using Densenet-201, InceptionV3, Xception, and an ensemble of these pre-trained models. The model’s performance and results obtained by the proposed ensemble model are promising, with a 97% accuracy rate, outperforming other studies on Kurdish character recognition.