This work presents a healthcare monitoring system that can be used in an intensive care room. Biological information represented by ECG signals is achieved by ECG acquisition part . AD620 Instrumentation Amplifier selected due to its low current noise. The ECG signals of patients in the intensive care room are measured through wireless nodes. A base node is connected to the nursing room computer via a USB port , and is programmed with a specific firmware. The ECG signals are transferred wirelessly to the base node using nRF24L01+ wireless module. So, the nurse staff has a real time information for each patient available in the intensive care room. A star Wireless Sensor Network is designed for collecting ECG signals . ATmega328 MCU in the Arduino Uno board used for this purpose. Internet for things used For transferring ECG signals to the remote doctor, a Virtual Privet Network is established to connect the nursing room computer and the doctor computer . So, the patients information kept secure. Although the constructed network is tested for ECG monitoring, but it can be used to monitor any other signals. INTRODUCTION For elderly people, or the patient suffering from the cardiac disease it is very vital to perform accurate and quick diagnosis. Putting such person under continuous monitoring is very necessary. (ECG) is one of the critical health indicators that directly bene ¿ t from long-term monitoring. ECG signal is a time-varying signal representing the electrical activity of the heart. It is an effective, non- invasive diagnostic tool for cardiac monitoring[1]. In this medical field, a big improvement has been achieved in last few years. In the past, several remote monitoring systems using wired communications were accessible while nowadays the evolution of wireless communication means enables these systems to operate everywhere in the world by expanding internet benefits, applications, and services [2]. Wireless Sensor Networks (WSNs), as the name suggests consist of a network of wireless nodes that have the capability to sense a parameter of interest like temperature, humidity, vibration etc[3,4]. The health care application of wireless sensory network attracts many researches nowadays[ 5-7] . Among these applications ECG monitoring using smart phones[6,8], wearable Body sensors[9], remote patient mentoring[10],...etc. This paper presents wireless ECG monitoring system for people who are lying at intensive care room. At this room ECG signals for every patient are measured using wireless nodes then these signals are transmitted to the nursing room for remote monitoring. The nursing room computer is then connected to the doctors computer who is available at any location over the word by Virtual Privet Network (VPN) in such that the patients information is kept secure and inaccessible from unauthorized persons. II. M OTE H ARDWARE A RCHITECTURE The proposed mote as shown in Fig.1 consists of two main sections : the digital section which is represented by the Arduino UNO Board and the wireless module and the analog section. The analog section consists of Instrumentation Amplifier AD620 , Bandpass filter and an operational amplifier for gain stage, in addition to Right Leg Drive Circuit. The required power is supplied by an internal 3800MAH Lithium-ion (Li-ion) battery which has 3.7V output voltage.
This work presents aneural and fuzzy based ECG signal recognition system based on wavelet transform. The suitable coefficients that can be used as a feature for each fuzzy network or neural network is found using a proposed best basis technique. Using the proposed best bases reduces the dimension of the input vector and hence reduces the complexity of the classifier. The fuzzy network and the neural network parameters are learned using back propagation algorithm.
This work concerns creating a monitoring system for a smart hospital using Raspberry Pi to measure vital signs. The readings are continually sent to central monitoring units outside the room instead of being beside the patients, to ensure less contacting between the medical staff and patients, also the cloud is used for those who leave the hospital, as the design can track on their medical cases. Data presentation and analysis were accomplished by the LabVIEW program. A Graphical User Interface (GUI) has been created by the Virtual-Instrument (VI) of this program that offer real-time access to monitor patients’ measurements. If unhealthy states are detected, the design triggers alerts and sends SMS message to the doctor. Furthermore, the clinicians can scan a QR code (which is assigned to each patient individually) to access its real-time measurements. The system also utilizes Electrocardiography (ECG) to detect abnormalities and identify specific heart diseases based on its extracted parameters to encourage patients to seek timely medical attention, while aiding doctors in making well-informed decisions. To evaluate the system’s performance, it is tested in the hospital on many patients of different ages and diseases as well. According to the results, the accuracy measurement of SpO2 was about 98.39%, 97.7% for (heart rate) and 98.7% for body temperature. This shows that the system can offer many patients receiving health services from various facilities, and it ensures efficient data management, access control, real-time monitoring, and secure patient information aligning with healthcare standards.
Studies indicate cardiac arrhythmia is one of the leading causes of death in the world. The risk of a stroke may be reduced when an irregular and fast heart rate is diagnosed. Since it is non-invasive, electrocardiograms are often used to detect arrhythmias. Human data input may be error-prone and time-consuming because of these limitations. For early detection of heart rhythm problems, it is best to use deep learning models. In this paper, a hybrid bio-inspired algorithm has been proposed by combining whale optimization (WOA) with adaptive particle swarm optimization (APSO). The WOA is a recently developed meta-heuristic algorithm. APSO is used to increase convergence speed. When compared to conventional optimization methods, the two techniques work better together. MIT-BIH dataset has been utilized for training, testing and validating this model. The recall, accuracy, and specificity are used to measure efficiency of the proposed method. The efficiency of the proposed method is compared with state-of-art methods and produced 98.25 % of accuracy.