COVID-19 is an infectious viral disease that mostly affects the lungs. That quickly spreads across the world. Early detection of the virus boosts the chances of patients recovering quickly worldwide. Many radiographic techniques are used to diagnose an infected person such as X-rays, deep learning technology based on a large amount of chest x-ray images is used to diagnose COVID-19 disease. Because of the scarcity of available COVID-19 X-rays image, the limited COVID-19 Datasets are insufficient for efficient deep learning detection models. Another problem with a limited dataset is that training models suffer from over-fitting, and the predictions are not generalizable to address these problems. In this paper, we developed Conditional Generative Adversarial Networks (CGAN) to produce synthetic images close to real images for the COVID-19 case and traditional augmentation that was used to expand the limited dataset then used to train by Customized deep detection model. The Customized Deep learning model was able to obtain excellent detection accuracy of 97% accurate with only ten epochs. The proposed augmentation outperforms other augmentation techniques. The augmented dataset includes 6988 high-quality and resolution COVID-19 X-rays images. At the same time, the original COVID-19 X-rays images are only 587.
COVID-19 emerged in 2019 in china, the worldwide spread rapidly, and caused many injuries and deaths among humans. Accurate and early detection of COVID-19 can ensure the long-term survival of patients and help prohibit the spread of the epidemic. COVID-19 case classification techniques help health organizations quickly identify and treat severe cases. Algorithms of classification are one the essential matters for forecasting and making decisions to assist the diagnosis, early identification of COVID-19, and specify cases that require to intensive care unit to deliver the treatment at appropriate timing. This paper is intended to compare algorithms of classification of machine learning to diagnose COVID-19 cases and measure their performance with many metrics, and measure mislabeling (false-positive and false-negative) to specify the best algorithms for speed and accuracy diagnosis. In this paper, we focus onto classify the cases of COVID-19 using the algorithms of machine learning. we load the dataset and perform dataset preparation, pre-processing, analysis of data, selection of features, split of data, and use of classification algorithm. In the first using four classification algorithms, (Stochastic Gradient Descent, Logistic Regression, Random Forest, Naive Bayes), the outcome of algorithms accuracy respectively was 99.61%, 94.82% ,98.37%,96.57%, and the result of execution time for algorithms respectively were 0.01s, 0.7s, 0.20s, 0.04. The Stochastic Gradient Descent of mislabeling was better. Second, using four classification algorithms, (eXtreme-Gradient Boosting, Decision Tree, Support Vector Machines, K_Nearest Neighbors), the outcome of algorithms accuracy was 98.37%, 99%, 97%, 88.4%, and the result of execution time for algorithms respectively were 0.18s, 0.02s, 0.3s, 0.01s. The Decision Tree of mislabeling was better. Using machine learning helps improve allocate medical resources to maximize their utilization. Classification algorithm of clinical data for confirmed COVID-19 cases can help predict a patient's need to advance to the ICU or not need by using a global dataset of COVID-19 cases due to its accuracy and quality.
Novel Coronavirus (Covid-2019), which first appeared in December 2019 in the Chinese city of Wuhan. It is spreading rapidly in most parts of the world and becoming a global epidemic. It is devastating, affecting public health, daily life, and the global economy. According to the statistics of the World Health Organization on August 11, the number of cases of coronavirus (Covid-2019) reached nearly 17 million, and the number of infections globally distributed among most European countries and most countries of the Asian continent, and the number of deaths from the Corona virus reached 700 thousand people around the world. . It is necessary to detect positive cases as soon as possible in order to prevent the spread of this epidemic and quickly treat infected patients. In this paper, the current literature on the methods used to detect Covid is presented. In these studies, the research that used different techniques of artificial intelligence to detect COVID-19 was reviewed as the convolutionary neural network (ResNet50, ResNet101, ResNet152, InceptionV3 and Inception-ResNetV2) were proposed for the identification of patients infected with coronavirus pneumonia using chest X-ray radiographs By using 5-fold cross validation, three separate binary classifications of four grades (COVID-19, normal (healthy), viral pneumonia and bacterial pneumonia) were introduced. It has been shown that the pre-trained ResNet50 model offers the highest classification performance (96.1 percent accuracy for Dataset-1, 99.5 percent accuracy for Dataset-2 and 99.7 percent accuracy for Dataset-2) based on the performance results obtained.
The monitoring of COVID-19 patients has been greatly aided by the Internet of Things (IoT). Vital signs, symptoms, and mobility data can be gathered and analyzed by IoT devices, including wearables, sensors, and cameras. This information can be utilized to spot early infection symptoms, monitor the illness’s development, and stop the virus from spreading. It’s critical to take vital signs of hospitalized patients in order to assess their health. Although early warning scores are often calculated three times a day, they might not indicate decompensation symptoms right away. Death rates are higher when deterioration is not properly diagnosed. By employing wearable technology, these ongoing assessments may be able to spot clinical deterioration early and facilitate prompt therapies. This research describes the use of Internet of Things (IoT) to follow fatal events in high-risk COVID-19 patients. These patients’ vital signs, which include blood pressure, heart rate, respiration rate, blood oxygen level, and fever, are taken and fed to a central server on a regular basis so that information may be processed, stored, and published instantly. After processing, the data is utilized to monitor the patients’ condition and send Short Message Service (SMS) alerts when the patients’ vital signs rise above predetermined thresholds. The system’s design, which is based on two ESP32 controllers, sensors for the vital signs listed above, and a gateway, provides real-time reports, high-risk alerts, and patient status information. Clinicians, the patient’s family, or any other authorized person can keep an eye on and follow the patient’s status at any time and from any location. The main contribution in this work is the designed algorithm used in the gateway and the manner in which this gateway collects, analyze, process, and send the patient’s data to the IoT server from one side and the manner in which the gateway deals with the IoT server in the other side. The proposed method leads to reduce the cost and the time the system it takes to get the patient’s status report.
SARS-COV-2 (severe acute respiratory syndrome coronavirus-2) has caused widespread mortality. Infected individuals had specific radiographic visual features and fever, dry cough, lethargy, dyspnea, and other symptoms. According to the study, the chest X-ray (CXR) is one of the essential non-invasive clinical adjuncts for detecting such visual reactions associated with SARS-COV-2. Manual diagnosis is hindered by a lack of radiologists' availability to interpret CXR images and by the faint appearance of illness radiographic responses. The paper describes an automatic COVID detection based on the deep learning- based system that applied transfer learning techniques to extract features from CXR images to distinguish. The system has three main components. The first part is extracting CXR features with MobileNetV2. The second part used the extracted features and applied Dimensionality reduction using LDA. The final part is a Classifier, which employed XGBoost to classify dataset images into Normal, Pneumonia, and Covid-19. The proposed system achieved both immediate and high results with an overall accuracy of 0.96%, precision of 0.95%, recall of 0.94%, and F1 score of 0.94%.
Today, the trends are the robotics field since it is used in too many environments that are very important in human life. Covid 19 disease is now the deadliest disease in the world, and most studies are being conducted to find solutions and avoid contracting it. The proposed system senses the presence according to a specific injury to warn of it and transfer it to the specialist doctor. This system is designed to work in service departments such as universities, institutes, and all state departments serving citizens. This system consists of two parts: the first is fixed and placed on the desk and the other is mobile within a special robot that moves to perform the required task. This system was tested at the University of Basrah within the college of engineering, department of electrical Engineering, on teaching staff, students, and staff during the period of final academic exams. The presence of such a device is considered a warning according to a specific condition and isn’t a treatment for it, as the treatment is prescribed by the specialist doctor. It is found that the average number of infected cases is about 3% of the total number of students and the teaching staff and the working staff. The results were documented in special tables that go to the dean of the college with the attendance tables to know the daily health status of the students.