A theoretical analysis is presented to calculate the signal phase shift and the gain coefficient associated with two-wave mixing in photorefractive crystals subjected to an external electric field. The relative position of the induced-refractive index grating with respect to the fringe pattern of the two input optical beams leads to a coupling effect between the phase and intensity of these beams. An optical logic operation system that is based on photorefractive two-wave mixing is introduced. This system uses the fringe-shifting techniques that are executed by a Mach-Zehnder interferometer. The proposed system configurations are capable of producing all the basic 16 two-operand Boolean functions simultaneously at different output planes.
The development of Fuzzy Logic Controllers (FLC) with low error rates and cost effectiveness has been the subject of numerous studies. This paper study goals to the investigation and then implementation an FLC using the readily accessible and reasonably priced Raspberry Pi technology. The FLC used in this work has two inputs, one output, and five Membership Functions (MFs) for each input and output. The FLC goes through two processes, tweaking the MF parameters and tuning input/ output Scaling Factors. The tuning technique makes use of the Genetic Algorithm (GA). The whole set of the FLC probabilities is taken into account as the tuned FLC controller, and then transformed into a lookup table. The Center of Gravity (COG) approach is used to determine the output for the tuned FLC controller. The resulting table is converted into values of digital binary using a specific type of encoder, and then extraction of the set of Boolean functions to apply this tuned circuit. Finally, the Python 3 programming language is used to define the resultant Boolean functions on the Raspberry Pi platform, and then a decoder extracted the appropriate control action from the output. The Benefit of this method is the use of a digital numbering system to define the FLC, which is implemented on Raspberry Pi technology and allows for fuzzified high processing speed output per second. The controller speed has not been unaffected by the quantity for these fuzzy rules.