In medium voltage and high-power drive applications, pulse width modulation (PWM) techniques are widely used to achieve effective speed control of AC motors. In real-time, an industrial drive system requires reduced hardware complexity and low computation time. The reliability of the AC drive can be improved with the FPGA (field programmable gate array) hardware equipped with digital controllers. To improve the performance of AC drives, a new FPGA-based Wavect real-time prototype controller (Xilinx ZYNQ-7000 SoC) is used to verify the effectiveness of the controller. These advanced controllers are capable of reducing computation time and enhancing the drive performance in real- time applications. The comparative performance analysis is carried out for the most commonly used voltage source inverter (VSI)-based PWM techniques such as sinusoidal pulse width modulation (SPWM) and space vector pulse width modulation (SVPWM) for three-phase, two-level inverters. The comparative study shows the SVPWM technique utilizes DC bus voltage more effectively and produces less harmonic distortion in terms of higher output voltage, flexible control of output frequency, and reduced harmonic distortion at output voltage for motor control applications. The simulation and hardware results are verified and validated by using MATLAB/Simulink software and FPGA-based Wavect real-time controller respectively.
Upkeeping the Battery State-Of-Charge (SoC) and its life are of great significance in Battery Electric Vehicle (BEV) & Hybrid Electric Vehicles (HEV). This is possible by integrating Solar Photovoltaic Panels (PPs) on the Roof-top of the BEVs & HEVs. However, unlike Solar Powered Vehicle Charging stations and other PV applications where the solar panels are installed in such a way to extract the maximum Photon energy incident on the panel, vehicle Roof-top mount Solar PPs face many challenges in extracting maximum Power due to partial shading issues especially under dynamic conditions when passing under trees, high rise buildings and cloud passages. This paper proposes a new strategy called “Super-capacitor Assisted Photovoltaic Array”. In which Photovoltaic Modules are integrated with Super-capacitors to improve the transient performance of the Photovoltaic Array system. The design of proposed Super-capacitor Assisted PV array is validated & its performance is compared with conventional PV array in Matlab/ Simulink environment.