This work presents a Fuzzy based adaptive Sliding Mode Control scheme to deal with control problem of full vehicle active suspension system and take into consideration the nonlinearities of the spring and damper, unmodeled dynamics as well as the external disturbances. The control law of fuzzy based adaptive Sliding Mode Control scheme will update the parameters of fuzzy sliding mode control by using the stability analysis of Lyapunov criteria such that the convergence in finite time and the stability of the closed loop are ensured. The proposed control scheme consists of four similar subsystems used for the four sides of the vehicle. The sub control scheme contains two loops, the outer loop is built using sliding mode controller with fuzzy estimator to approximate and estimate the unknown parameters in the system. In the inner loop, a controller of type Fractional Order PID (FOPID) is utilized to create the required actuator force. All parameters in the four sub control schemes are optimized utilizing Artificial Bee Colony (ABC) algorithm in order to improve the performance. The results indicate the effectiveness and good achievement of the proposed controller in providing the best ability to limit the vibration with good robustness properties in comparison with passive suspension system and using sliding mode control method. The controlled suspension system shows excellent results when it was tested with and without typical breaking and bending torques.
Growing interests in nature-inspired computing and bio-inspired optimization techniques have led to powerful tools for solving learning problems and analyzing large datasets. Several methods have been utilized to create superior performance-based optimization algorithms. However, certain applications, like nonlinear real-time, are difficult to explain using accurate mathematical models. Such large-scale combination and highly nonlinear modeling problems are solved by usage of soft computing techniques. So, in this paper, the researchers have tried to incorporate one of the most advanced plant algorithms known as Venus Flytrap Plant algorithm(VFO) along with soft-computing techniques and, to be specific, the ANFIS inverse model-Adaptive Neural Fuzzy Inference System for controlling the real-time temperature of a microwave cavity that heats oil. The MATLAB was integrated successfully with the LabVIEW platform. Wide ranges of input and output variables were experimented with. Problems were encountered due to heating system conditions like reflected power, variations in oil temperature, and oil inlet absorption and cavity temperatures affecting the oil temperature, besides the temperature’s effect on viscosity. The LabVIEW design followed and the results figure in the performance of the VFO- Inverse ANFIS controller.
This article emphasizes on a strategy to design a Super Twisting Sliding Mode Control (STSMC) method. The proposed controller depends on the device of Field Programmable Gate Array (FPGA) for controlling the trajectory of robot manipulator. The gains of the suggested controller are optimized using Chaotic Particle Swarm Optimization (PSO) in MATLAB toolbox software and Simulink environment. Since the control systems speed has an influence on their stability requirements and performance, (FPGA) device is taken in consideration. The proposed control method based on FPGA is implemented using Xilinx block sets in the Simulink. Integrated Software Environment (ISE 14.7) and System Generator are employed to create the file of Bitstream which can be downloaded in the device of FPGA. The results show that the designed controller based of on the FPGA by using System Generator is completely verified the effectiveness of controlling the path tracking of the manipulator and high speed. Simulation results explain that the percentage improvement in the Means Square Error (MSEs) of using the STSMC based FPGA and tuned via Chaotic PSO when compared with the same proposed controller tuned with classical PSO are 17.32 % and 13.98 % for two different cases of trajectories respectively.