Iraqi Journal for Electrical and Electronic Engineering
Login
Iraqi Journal for Electrical and Electronic Engineering
  • Home
  • Articles & Issues
    • Latest Issue
    • All Issues
  • Authors
    • Submit Manuscript
    • Guide for Authors
    • Authorship
    • Article Processing Charges (APC)
    • Proofreading Service
  • Reviewers
    • Guide for Reviewers
    • Become a Reviewer
  • About
    • About Journal
    • Aims and Scope
    • Editorial Team
    • Journal Insights
    • Peer Review Process
    • Publication Ethics
    • Plagiarism
    • Allegations of Misconduct
    • Appeals and Complaints
    • Corrections and Withdrawals
    • Open Access
    • Archiving Policy
    • Abstracting and indexing
    • Announcements
    • Contact

Search Results for Asmaa H. Majeed

Article
Two Elements Elliptical Slot CDRA Array with Corporate Feeding For X-Band Applications

Abdulkareem S. Abdullah, Asmaa H. Majeed, Khalil H. Sayidmarie, Raed A. Abd- Alhameed

Pages: 48-54

PDF Full Text
Abstract

In this paper, a compact two-element cylindrical dielectric resonator antenna (CDRA) array with corporate feeding is proposed for X-band applications. The dielectric resonator antenna (DRA) array is excited by a microstrip feeder using an efficient aperture-coupled method. The designed array antenna is analyzed using a CST microwave studio. The fabricated sample of the proposed CDRA antenna array showed bandwidth extending from 10.42GHz to 12.84GHz (20.8%). The achieved array gain has a maximum of 9.29dB i at frequency of 10.7GHz. This is about 2.06dB i enhancement of the gain in comparison with a single pellet CDRA. The size of the whole antenna structure is about 50  50mm 2 .

Article
The Beam Squint Effects in Antenna Arrays at Millimeter Bands

Mariam Q. Abdalrazak, Asmaa H. Majeed, Raed A. Abd-Alhameed

Pages: 16-22

PDF Full Text
Abstract

Beam squint phenomenon is considered one of the most drawbacks that limit the use of (mm-waves) array antennas; which causes significant degradation in the BER of the system. In this paper, a uniform linear array (ULA) system is exemplified at millimeter (mm-waves) frequency bands to realize the effects of beam squint phenomena from different directions on an equivalent gain response to represent the channel performance in terms of bit error rate (BER). A simple QPSK passband signal model is developed and tested according to the proposed antenna array with beam squint. The computed results show that increasing the passband bandwidth and the number of antenna elements, have a significant degradation in BER at the receiver when the magnitude and phase errors caused by the beam squint at 26 GHz with various spectrum bandwidths.

Article
Ultra-Wide Band Printed Microstrip Patch Antenna with Two Band Rejection Feature Asmaa H. Majeed College of Information Engineering, Al-Nahrain University, Baghdad, Iraq Correspondence

Asmaa H. Majeed

Pages: 259-265

PDF Full Text
Abstract

This work presents a new design idea for a UWB printed micro strip patch antenna with two band-rejection features. The patch has an elliptical shape and its feeding using micro strip feeding line. To achieve the UWB, an elliptical slot was etched on a ground plane. The rejection of two-band is achieved with the addition of two different slots on the radiating patch, the first slot is inverted U shaped slot and the other is U-shaped slot, so there is no need for antenna’s additional size. The radiation pattern of the suggested antenna has an omnidirectional shape for the frequency band from 3.168 GHz to over 15 GHz. There is a two rejection bands, the first one covering 4.87−5.79 GHz with a center frequency of 5.42 GHz, and the other covering 7.2−8.45 GHz with a center frequency of 7.8 GHz. The chosen substrate for the current work is FR-4 having permittivity of 4.3 and thickness of 1.43 mm and the suggested antenna has a small size of 24.5×24.5mm2. The Experimental results of the manufactured antenna showed agreement with those results of the simulated one.

1 - 3 of 3 items

Search Parameters

Journal Logo
Iraqi Journal for Electrical and Electronic Engineering

College of Engineering, University of Basrah

  • Copyright Policy
  • Terms & Conditions
  • Privacy Policy
  • Accessibility
  • Cookie Settings
Licensing & Open Access

CC BY 4.0 Logo Licensed under CC-BY-4.0

This journal provides immediate open access to its content.

Editorial Manager Logo Elsevier Logo

Peer-review powered by Elsevier’s Editorial Manager®

Copyright © 2025 College of Engineering, University of Basrah. All rights reserved, including those for text and data mining, AI training, and similar technologies.